7. ABCD.EFGH adalah kubus dengan rusuk 10 cm. Titik X, Y, dan Z adalah pertengahan EH, BG dan AB. Hitunglah panjang XZ, YZ, dan XY.
Penyelesaian:
Diketahui
panjang rusuk = 10 cm
Titik X berada ditengah garis EH
Titik Z berada ditengah garis AB
Titik Y berada ditengah peersegi BCGF
Ditanya:
i) panjang garis XZ
ii) panjang garis YZ
iii) panjang garis XY
Pembahasan:
i) panjang garis XZ
dari gambar tersebut diketahui titik X dan Z berada ditengah tengah garis EH dan AB, sehingga panjang garis EX dan AZ adalah setengah dari panjang rusuk, EX = 5 cm, AZ = 5 cm. Untuk mencari panjang XZ, maka terlebih dahulu harus mencari panjang AX dengan cara sebagai berikut:
AX² = AE² + EX²
AX² = (10 cm)² + (5 cm)²
AX² = 100 cm² + 25 cm²
AX = √(125 cm²)
AX = 5√5 cm
setelah mengetahui panjang AX, baru kita bisa mencari panjang XZ seperti berikut ini:
XZ² = AZ² + AX²
XZ² = (5 cm)² + (5√5 cm)²
XZ² = 25 cm² + 125 cm²
XZ = √(150 cm²)
XZ = 5√6 cm
Jadi, didapatkan panjang XZ adalah 5√6 cm
ii) panjang garis YZ
pertama-tama dapat diperhatikan bahwa titik Y berada di tengah- tengah persegi, sehingga kita perlu mencari panjang BY dengan cara mencari panjang BG terlebih dahulu dengan cara sebagai berikut:
BG² = BC² + CG²
BG² = (10 cm)² + (10 cm)²
BG² = 100 cm² + 100 cm²
BG = √(200 cm²)
BG = 10√2 cm
lalu karena Y berada ditengah tengah BG, maka panjang Y adalah setengah dari panjang BG, sehingga:
BY = x BG
BY = x 10√2BY = 5√2 cm
Kemudian dapat dilihat bahwa titik Z berada ditengah tengah garis AB sehingga panjang BZ adalah setengah panjang rusuk, panjang BZ = 5 cm
Sekarang kita dapat mencari panjang dari YZ
YZ² = BZ² + BY²
YZ² = (5 cm)² + (5√2 cm)²
YZ² = 25 cm² + 50 cm²
YZ = √(75 cm²)
YZ = 5√3 cm
Jadi, panjang dari YZ adalah 5√3 cm
iii) panjang XY
Sebelum mencari panjang YZ, kita perlu membuat sebuah titik khayalan ditengah tengah garis FG yang kita namai titik O, sehingga didapatkan panjang XO = panjang rusuk = 10 cm, sedangkan panjang YO = setengah panjang rusuk = 5 cm. Baru setelah itu kita dapat mencari panjang XY seperti berikut ini
XY² = XO² + YO²
XY² = (10 cm)² + (5 cm)²
XY² = 100 cm² + 25 cm²
XY = √(125 cm²)
XY = 5√5 cm
Jadi, didapatkan panjang XY adalah 5√5 cm