Kpz0JXNL4KwnNLROcdoTIG3N8IlpsfRVGQnxBFp8
Bookmark

Kunci Jawaban MTK Kelas 8 Halaman 30 Ayo Kita Berlatih 1.5

Berikut ini merupakan pembahasan kunci jawaban Buku Matematika untuk Kelas 8 halaman 30 Pembahasan kali ini kita akan bahas latihan yang ada pada buku paket MTK Ayo Kita Berlatih 1.5 Halaman 30 - 33 Buku siswa untuk Semester 1 Kelas VIII SMP/MTS. Semoga dengan adanya pembahasan kunci jawaban Pilihan Ganda (PG) dan juga Esaay Bab 1 Pola Bilangan Kelas 8 ini, kalian bisa menjadi lebih giat untuk belajar. Kunci jawaban ini  diperuntukkan untuk para pelajar yang sedang mengerjakan tugas Kurikulum 2013 (K13). Kunci Jawaban Ayo Kita Berlatih 1.5 Hal 30 MTK Kls 8

Kunci Jawaban MTK Kelas 8 Halaman 30 Ayo Kita Berlatih 1.5
Kunci Jawaban MTK Kelas 8 Halaman 30 Ayo Kita Berlatih 1.5

Kunci Jawaban MTK Kelas 8 Halaman 30 Ayo Kita Berlatih 1.5

Ayo Kita Berlatih 1.5

1. Perhatikan pola berikut 
Tentukan banyak bola pada pola ke-n, untuk n bilangan bulat positif.
Jawaban :

a = 1
b = 4

Un = a + (n - 1) x b
Un = 1 + (n - 1) x 4
Un = 1 + 4n - 4
Un = 4n - 3

2. Perhatikan pola berikut.
Tentukan banyak bola pada pola ke-n, untuk n bilangan bulat positif.
Jawaban :

Un = a + (n – 1)b + ½ (n – 1)(n – 2)c
Un = 1 + (n – 1)4 + ½ (n – 1)(n – 2)4
Un = 1 + (4n – 4) + 2(n² – 3n + 2)
Un = 1 + 4n – 4 + 2n² – 6n + 4
Un = 2n² – 2n + 1

3. Perhatikan susunan bilangan berikut. Susunan bilangan berikut dinamakan pola bilangan Pascal, karena ditemukan oleh Blaise Pascal. Bilangan di baris ke-2 adalah hasil penjumlahan dari dua bilangan pada baris ke-1. Tentukan jumlah bilangan pada baris ke-n pada pola bilangan Pascal berikut.
Jawaban :

Jumlah bilangan pada tiap baris,
baris ke-1 = 1 = 2⁰
baris ke-2 = 1 + 1 = 2 = 2¹
baris ke-3 = 1 + 2 + 1 = 4 = 2²
baris ke-4 = 1 + 3 + 3 + 1 = 8 = 2³
baris ke-n = 2n-1

4. Perhatikan bilangan-bilangan yang dibatasi oleh garis merah berikut.
Jika pola bilangan tersebut diteruskan hingga n, untuk n bilangan bulat positif, tentukan:
a. jumlah bilangan pada pola ke-n.
b. jumlah bilangan hingga pola ke-n.
Jawaban :

a) Jumlah bilangan pada tiap pola,
pola ke-1 = 1 = 13
pola ke-2 = 8 = 23
pola ke-3 = 27 = 23
pola ke-n = n3

b) Jumlah bilangan hingga pola,
13+ 23 + 33 + .... + n3
= [1/2n x (n+1)]2

5. Perhatikan gambar noktah-noktah berikut.
a. Apakah gambar di atas membentuk suatu pola? Jelaskan.
b. Tentukan banyak noktah pada 5 urutan berikutnya. Hubungkan masing-masing pola di atas dengan suatu bilangan yang menunjukkan banyaknya noktah dalam pola itu. Pola bilangan apakah yang kalian dapat? Jelaskan.
Jawaban :

a) Ya, gambar diatas membentuk pola bilangan ganjil yang dimulai dari angka 1 kemudian bilangan selanjutnya bertambah 2.

b) Banyak noktah pada 5 urutan berikutnnya adalah 9, 11, 13, 15, 17. Pola bilangan yang didapat adalah pola bilangan ganjil. Rumus pola ke-n = 2n - 1.

6. Tentukan banyak lingkaran pada pola ke-100 pada pola berikut.
Jawaban :

Pola ke-1 = 2
Pola ke-2 = 4
Pola ke-3 = 6
Pola ke-n = 2n
Pola ke-100 = 2 x 100
= 200

Jadi, banyak lingkaran pada pola ke-100 pada pola tersebut adalah 200.

7. Tentukan banyak lingkaran pada pola ke-10, ke-100, ke-n pada pola berikut, untuk sebarang n bilangan bulat positif.
Jawaban :

Pola ke-1 = 2 = 1 x 2
Pola ke-2 = 6 = 2 x 3
Pola ke-3 = 12 = 3 x 4
Pola ke-n = n x (n + 1)

Pola ke-10 = n x (n + 1)
= 10 x (10 + 1)
= 10 x 11
= 110

Pola ke-100 = n x (n + 1)
= 100 x (100 + 1)
= 100 x 101
= 10.100

Pola ke-n = n x (n + 1)

8. Tentukan banyak lingkaran pada pola ke-10, ke-100, ke-n pada pola berikut, untuk sebarang n bilangan bulat positif.
Jawaban :

Pola ke-1 = 4 = 1 x 4
Pola ke-2 = 8 = 2 x 4
Pola ke-3 = 12 = 3 x 4
Pola ke-n = n x 4

Pola ke-10 = n x 4
= 10 x 4
= 40

Pola ke-100 = n x 4
= 100 x 4
= 400

Pola ke-n = n x 4

9. Tentukan banyak lingkaran pada pola ke-10, ke-100, ke-n pada pola berikut, untuk sebarang n bilangan bulat positif.
Jawaban :

Pola ke-1 = 3 = 1 + 2
Pola ke-2 = 6 = 1 + 2 + 3
Pola ke-3 = 10 = 1 + 2 + 3 + 4
Pola ke-n = 1/2 x (n+1) x (n+2)

Pola ke-10 = 1/2 x (n+1) x (n+2)
= 1/2 x (10+1) x (11+2)
= 1/2 x 11 x 12
= 66

Pola ke-100 = 1/2 x (n+1) x (n+2)
= 1/2 x (100+1) x (100+2)
= 1/2 x 101 x 102
= 5.151

Pola ke-n = 1/2 x (n+1) x (n+2)

10. Perhatikan pola bilangan berikut.
a. Nyatakan ilustrasi dari pola tersebut.
b. Tentukan pola ke-n, untuk sebarang n bilangan bulat positif.
Jawaban :

a) 1/2, 1/6, 1/12
Dari pola tersebut,
Angka pembilang akan selalu = 1
Angka penyebut = 2, 6, 12 = (1 x 2) , (2 x 3) , (3 x 4), .... , (n x (n+1))

b) Pola ke-n = 1 / n x (n +1)

11. Dengan memerhatikan bola-bola yang dibatasi garis merah, tentukan:
a. banyak bola pada pola ke-100.
b. jumlah bola hingga pola ke-100.
kunci jawaban matematika kelas 8 halaman 30 - 33 ayo kita berlatih 1.5 
Jawaban :

a) Banyak bola pada pola ke-100 adalah 792 bola.
b) Jumlah bola hingga pola ke-100 adalah 39.601 bola.

12. Tiap-tiap segitiga berikut terbentuk dari 3 stik. Dengan memerhatikan pola berikut, tentukan banyak stik pada pola ke-10, ke-100, dan ke-n, untuk sebarang n bilangan bulat positif.
Jawaban :

Pola ke-1 = 3 = (2 x 1) + 1
Pola ke-2 = 5 = (2 x 2) + 1
Pola ke-3 = 7 = (2 x 3) + 1
Pola ke-4 = 9 = (2 x 4) + 1
Pola ke-n = 2n + 1

Pola ke-10 = (2 x 10) + 1
= 20 + 1
= 21
Jadi, banyak stik pada pola ke-10 adalah 21 stik.

Pola ke-100 = (2 x 100) + 1
= 200 + 1
= 201
Jadi, banyak stik pada pola ke-100 adalah 201 stik.

13. Dengan memerhatikan pola berikut
a. Tentukan tiga pola berikutnya.
b. Tentukan pola bilangan ke-n, untuk sebarang n bilangan bulat positif.
c. Tentukan jumlah hinggan bilangan ke-n, untuk sebarang n bilangan bulat positif.
Jawaban :

a) 1/20 , 1/30 , 1/42
b) Pola ke-n = 1 / n x (n +1)
c) Jumlah hinnga ke-n = n / (n + 1)