Kunci Jawaban MTK Kelas 8 Halaman 31 - 32 Ayo Kita Berlatih 6.3
Halo gaes kembali lagi diwebsite saya, pada pembahasan kali ini saya akan membagikan sebuah kunci jawaban yang akan memudahkan teman-teman dalam mengerjakan tugas sekolah. Nah pada artikel kali ini saya akan bahas pelajaran Matematika atau MTK.
Untuk tingkat atau jenjangnya yaitu untuk Kelas 8 SMP/MTS untuk ketentuan bukunya, soal-soal yang akan saya bahas kunci jawabannya ini terdapat dalam Buku Kemdikbud Kurikulum 2013 Revisi tahun 2017 untuk semester 2.
Secara detailnya, saya akan bahas Kunci Jawaban Matematika Kelas 8 Halaman 31 - 32 Ayo Kita Berlatih 6.3 dan terdapat pada Bab 6 Teorema Pythagoras. Semoga dengan adanya artikel seputar kunci jawaban ini bisa membantu teman-teman atau siswa-siswa dalam mengerjakan Tugas Sekolah dan membantu para guru dalam memberikan pelajaran kepada muridnya.
Disclaimer : Kunci Jawaban yang saya tulis diwebsite ini tidak menjadi patokan pasti benar, saya hanya membantu dan silahkan cek lagi apabila jawaban yang saya berikan kurang memuaskan
Pembahasan :
Jawaban :
Segitiga siku-siku yaitu c² = a² + b²
Segitiga lancip yaitu c² < a² + b²
Dengan menggunakan syarat diatas dengan c adalah sudut terpanjangnya maka didapat jawabannya :
a) Segitiga lancip
b) Segitiga siku-siku
c) Segitiga siku-siku
d) Segitiga tumpul
e) Segitiga tumpul
f) Segitiga tumpul
g) Segitiga lancip
h) Segitiga lancip
2. Manakah di antara kelompok tiga bilangan berikut yang merupakan tripel Pythagoras?
Jawaban :
196 = 100 + 144
196 ≠ 244
b) 13² = 7² + 11²
169 = 49 + 121
169 ≠ 170
c) (6+(1/2))² = 6² + (2+(1/2))²
42,25 = 36 + 6,25
42,25 = 42,25 (Tripel Pythagoras)
Jadi, yang merupakan tripel pythagoras adalah yang C.
3. Tentukan apakah ∆KLM dengan titik K(6, −6), L(39, −12), dan M(24, 18) adalah segitiga sebarang, segitiga sama kaki, atau segitiga sama sisi. Jelaskan jawaban kalian.
Jawaban :
= √((-12-(-6))² + (39 - 6)²)
= √((-6)² + 33²)
= √(36 + 1089)
= √1125
KM = √((y2 - y1)² + (x2-x1)²)
= √((18-(-6)² + (24-6)²)
= √(24² + 18²) = √(576 + 324)
= √900
= 30
LM = √((y2 - y1)² + (x2-x1)²)
= √((18-(-12)² + (24-39)²)
= √(30² + (-15)²)
= √(900 + 225)
= √1125
Jadi, karena panjang KL sama dengan panjang LM maka KLM adalah segitiga sama kaki.
4. Jika 32, x, 68 adalah tripel Pythagoras. Berapakah nilai x? Tunjukkan bagaimana kalian mendapatkannya.
Jawaban :
68² = 32² + x²
x² = 68² - 32²
x = √(4624 - 1024)
x = √3600
x = 60
Jadi, nilai x adalah 60.
5. Bilangan terkecil dari tripel Pythagoras adalah 33. Tentukan tripel Pythagoras. Jelaskan bagaimana kalian menemukan dua bilangan lainnya.
Jawaban :
Apabila bilangan terkecil dari suatu tripel pythagoras adalah 33, maka nilai kelipatannya adalah 33/3 = 11.
a = 33
b = 4 x 11 = 44
c = 5 x 11 = 55
Jadi, dua bilangan lainnya adalah 44 dan 55 didapat dengan perbandingan atau mencari lalu menghitung nilai kelipatannya.
6. Bingkai jendela yang terlihat berbentuk persegi panjang dengan tinggi 408 cm, panjang 306 cm, dan panjang salah satu diagonalnya 525 cm.
Jawaban :
275.625 ... 166.464 + 93.636
275.625 ≠ 260.100
Jadi, bingkai jendela tersebut Tidak benar-benar persegi panjang.
7. Panjang sisi-sisi segitiga adalah 1 cm, 2a cm, dan 3a cm. Buktikan bahwa ketiga ukuran tersebut bukan merupakan tripel Pythagoras.
Jawaban :
1 + 4a² ... 9a²
1 + 4a² ≠ 9a²
Jadi, Terbukti bahwa ketiga ukuran tersebut bukan merupakan tripel pythagoras.
a) Kita dapat pastikan sisi terpanjangnya adalah (p + q) maka,
a² + b² = c²
(p – q)² + p² = (p + q)²
p² - 2pq + q² + p² = p² + 2pq + q²
p² = 4pq
p = 4q
Jadi, hubungan antara p dan q adalah p = 4q.
b) Jika p = 8 maka,
p = 4q
q = 8/4
q = 2
p = 8
p - q = 8 - 2 = 6
p + q = 8 + 2 = 10
Jadi, tripel Pythagorasnya adalah 6, 8, dan 10.
8. Perhatikan ∆ABC berikut ini. BD = 4 cm, AD = 8 cm, dan CD = 16 cm
Jawaban :
= √(16² + 8²)
= √(256 + 64)
= √320
= 8√5 cm
Jadi, panjang AC adalah 8√5 cm.
b) AB = √(AD² + BD²)
= √(8² + 4²)
= √(64 + 16)
= √80
= 4√5 cm
Jadi, panjang AB adalah 4√5 cm.
c) BC² = AB² + AC²
(16 + 4)² = (4√5)² + (8√5)²
400 = 80 + 320
400 = 400
Jadi, ABC adalah segitiga siku-siku.
9. Diketahui persegi panjang ABCD. Terdapat titik P sedemikian sehingga PC = 8 cm, PA = 6 cm, dan PB = 10 cm
Jawaban :
6² = a² + b²
b² = 6² - a²
PB² = a² + d²
10² = a² + d²
d² = 10² - a²
PC² = c² + d²
8² = c² + d²
c² = 8² - d²
PD² = b² + c²
= (6² - a²) + (8² - d²)
= 6² - a² + 8² - (10² - a²)
= 6² - a² + 8² - 10² + a²
= 6² + 8² - 10²
= 36 + 64 - 100
= 0
Jadi, Titik P berada tepat di titik D, sehingga jarak titik P ke D adalah 0.