Dik: f(x) = x −3/x , x ≠ 0 dan g(x) = x2 9 −
Dit: a) (f + g)(x) b) (f – g)(x)
c) (f × g )(x)
d) (f/g) x
Penyelesaian:
Jika f dan g adalah dua buah fungsi yang diketahui maka jumlah, selisih, hasil kali, dan hasil bagi kedua fungsi tersebut adalah
(f + g)(x) = f(x) + g(x)
(f – g)(x) = f(x) – g(x)
(f . g)(x) = f(x) . g(x)
(f / g)(x) = f(x) / g(x).
Domain atau daerah asal, kodomain atau daerah kawan, dan range atau daerah hasil.
Mari kita lihat soal tersebut.
Diketahui fungsi f(x) = (x – 3)/x, x ≠ 0 dan g(x) = √(x² – 9).
(f + g)(x)
= f(x) + g(x)
= (x – 3)/x + √(x² – 9)
= (x – 3)/x + x√(x² – 9)/x
= [(x – 3) + x√(x² – 9)]/x
Domainnya D(f + g) = {x|x ≠ 0, x ∈ R}
Rangenya R(f + g) = {y| y ∈ R}
(f – g)(x)
= f(x) – g(x)
= (x – 3)/x – √(x² – 9)
= (x – 3)/x – x√(x² – 9)/x
= [(x – 3) – x√(x² – 9)]/x
Domainnya D(f – g) = {x|x ≠ 0, x ∈ R}
Rangenya R(f – g) = {y| y ∈ R}
(f . g)(x)
= f(x) . g(x)
= (x – 3)/x . √(x² – 9)
= [(x – 3)√(x² – 9)]/x
Domainnya D(f . g) = {x|x ≠ 0, x ∈ R}
Rangenya R(f .g) = {y| y ∈ R}
(f / g)(x)
= f(x) / g(x)
= [(x – 3)/x] / √(x² – 9)
= (x – 3)/[x√(x² – 9)]
Domainnya D(f / g) = {x|x ≠ 0, x ∈ R}
Rangenya R(f / g) = {y| y ∈ R}