Tentukan nilai sinus, cosinus, dan tangen untuk sudut P dan R pada setiap segitiga siku-siku di bawah ini.
Jawaban Uji Kompetensi 4.2 Halaman 139 MTK Kelas 10 (Trigonometri)
- Jawaban Uji Kompetensi 4.2 Matematika Kelas 10 Halaman 139 (Trigonometri)
- Jawaban Uji Kompetensi 4.2 Matematika Halaman 139 Kelas 10 (Trigonometri)
- Jawaban Uji Kompetensi 4.2 Halaman 139 MTK Kelas 10 (Trigonometri)
Trigonometri (UK 4.2!)
a)PR = √(QP2 + QR2= √(4^2 + 8^2)= √(16 + 64) = √80 = 4√5sin P = depan / miring = QR / PR = 8 / (4√5) = 2/√5cos P = samping / miring = QP / PR = 4 / (4√5) = 1/√5tan P = depan / samping = QR / QP = 8 / 4 = 2sin R = depan / miring = QP / PR = 4 / (4√5) = 1/√5cos R = samping / miring = QR / PR = 8 / (4√5) = 2/√5tan R = depan / samping = QP / QR = 4 / 8 = 1/2b)PQ = √(PR2 – QR2)= √(11^2 – 7^2)= √(121 – 49) = √72 = 6√2sin P = depan / miring = QR / PR = 7/11cos P = samping / miring = PQ / PR = 6√2/11tan P = depan / samping = QR / PQ = 7/6√2sin R = depan / miring = PQ / PR = 6√2/11cos R = samping / miring = QR / PR = 7/11tan R = depan / samping = PQ / QR = 6√2/7c)PR = √(PQ2 + QR2)= √(1^2 + 2^2)= √(1 + 4) = √5sin P = depan / miring = QR / PR = 2/√5cos P = samping / miring = PQ / PR = 1/√5tan P = depan / samping = QR / PQ = 2/1 = 2sin R = depan / miring = PQ / PR = 1/√5cos R = samping / miring = QR / PR = 2/√5tan R = depan / samping = PQ / QR = 1/2